Error Detection in Polynomial Basis Multipliers over Binary Extension Fields

نویسندگان

  • Arash Reyhani-Masoleh
  • M. Anwar Hasan
چکیده

In many of cryptographic schemes, the most time consuming basic arithmetic operation is the finite field multiplication and its hardware implementation may require millions of logic gates. It is a complex and costly task to develop such large finite field multipliers which will always yield error free outputs. In this effect, this paper considers fault tolerant multiplication in finite fields. It deals with detection of errors of bit-parallel and bit-serial polynomial basis multipliers over finite fields of characteristic two. Our approach is to partition the multiplier structure into a number of smaller computational units and use the parity prediction technique to detect errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Concurrent Error Detection in a Polynomial Basis Multiplier over GF(2m)

Eliminating cryptographic computation errors is vital for preventing attacks. A simple approach is to verify the correctness of the cipher before outputting it. The multiplication is the most significant arithmetic operation among the cryptographic computations. Hence, a multiplier with concurrent error detection ability is urgently necessary to avert attacks. Employing the re-computing shifted...

متن کامل

Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition

Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba scheme...

متن کامل

Efficient Gröbner basis reductions for formal verification of galois field multipliers

Galois field arithmetic finds application in many areas, such as cryptography, error correction codes, signal processing, etc. Multiplication lies at the core of most Galois field computations. This paper addresses the problem of formal verification of hardware implementations of (modulo) multipliers over Galois fields of the type F2k , using a computeralgebra/algebraic-geometry based approach....

متن کامل

An area/performance trade-off analysis of a GF(2) multiplier architecture for elliptic curve cryptography

A hardware architecture for GF(2 m) multiplication and its evaluation in a hardware architecture for elliptic curve scalar multiplication is presented. The architecture is a parameter-izable digit-serial implementation for any field order m. Area/performance trade-off results of the hardware implementation of the multiplier in an FPGA are presented and discussed. Finite fields like the binary G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002